Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
2.
Brain Behav Immun Health ; 22: 100462, 2022 Jul.
Article in English | MEDLINE | ID: covidwho-2286644

ABSTRACT

Neuroinflammation has been recognized as a component of Alzheimer's Disease (AD) pathology since the original descriptions by Alois Alzheimer and a role for infections in AD pathogenesis has long been hypothesized. More recently, this hypothesis has gained strength as human genetics and experimental data suggest key roles for inflammatory cells in AD pathogenesis. To review this topic, Duke/University of North Carolina (Duke/UNC) Alzheimer's Disease Research Center hosted a virtual symposium: "Infection and Inflammation: New Perspectives on Alzheimer's Disease (AD)." Participants considered current evidence for and against the hypothesis that AD could be caused or exacerbated by infection or commensal microbes. Discussion focused on connecting microglial transcriptional states to functional states, mouse models that better mimic human immunity, the potential involvement of inflammasome signaling, metabolic alterations, self-reactive T cells, gut microbes and fungal infections, and lessons learned from Covid-19 patients with neurologic symptoms. The content presented in the symposium, and major topics raised in discussions are reviewed in this summary of the proceedings.

3.
Brain, behavior, & immunity - health ; 22, 2022.
Article in English | EuropePMC | ID: covidwho-2034503

ABSTRACT

Neuroinflammation has been recognized as a component of Alzheimer's Disease (AD) pathology since the original descriptions by Alois Alzheimer and a role for infections in AD pathogenesis has long been hypothesized. More recently, this hypothesis has gained strength as human genetics and experimental data suggest key roles for inflammatory cells in AD pathogenesis. To review this topic, Duke/University of North Carolina (Duke/UNC) Alzheimer's Disease Research Center hosted a virtual symposium: “Infection and Inflammation: New Perspectives on Alzheimer's Disease (AD).” Participants considered current evidence for and against the hypothesis that AD could be caused or exacerbated by infection or commensal microbes. Discussion focused on connecting microglial transcriptional states to functional states, mouse models that better mimic human immunity, the potential involvement of inflammasome signaling, metabolic alterations, self-reactive T cells, gut microbes and fungal infections, and lessons learned from Covid-19 patients with neurologic symptoms. The content presented in the symposium, and major topics raised in discussions are reviewed in this summary of the proceedings. Highlights • The hypothesis that infectious agents could trigger Alzheimer's disease was proposed more than a century ago• Genomic and transcriptomic studies, functional assays, and new animal and cell models are dissecting the roles of microglia and other innate immune cells in AD, and microbe exposure is considered here as one potential trigger for immune activation• Changes in brain metabolism and gut-brain communication are influenced by microbes and may contribute to Alzheimer's pathology and cognitive decline• Studies are investigating how age dependent responses to the microbiome or to other bacterial, fungal or viral pathogens including SARS-CoV-2, could lead to neurodegeneration in Alzheimer's disease

5.
Front Neurol ; 12: 741044, 2021.
Article in English | MEDLINE | ID: covidwho-1477845

ABSTRACT

Objectives: Our objective was to identify characteristics associated with having an acute ischemic stroke (AIS) among hospitalized COVID-19 patients and the subset of these patients with a neurologic symptom. Materials and Methods: Our derivation cohort consisted of COVID-19 patients admitted to Yale-New Haven Health between January 3, 2020 and August 28, 2020 with and without AIS. We also studied a sub-cohort of hospitalized COVID-19 patients demonstrating a neurologic symptom with and without an AIS. Demographic, clinical, and laboratory results were compared between AIS and non-AIS patients in the full COVID-19 cohort and in the sub-cohort of COVID-19 patients with a neurologic symptom. Multivariable logistic regression models were built to predict ischemic stroke risk in these two COVID-19 cohorts. These 2 models were externally validated in COVID-19 patients hospitalized at a major health system in New York. We then compared the distribution of the resulting predictors in a non-COVID ischemic stroke control cohort. Results: A total of 1,827 patients were included in the derivation cohort (AIS N = 44; no AIS N = 1,783). Among all hospitalized COVID-19 patients, history of prior stroke and platelet count ≥ 200 × 1,000/µL at hospital presentation were independent predictors of AIS (derivation AUC 0.89, validation AUC 0.82), irrespective of COVID-19 severity. Among hospitalized COVID-19 patients with a neurologic symptom (N = 827), the risk of AIS was significantly higher among patients with a history of prior stroke and age <60 (derivation AUC 0.83, validation AUC 0.81). Notably, in a non-COVID ischemic stroke control cohort (N = 168), AIS patients were significantly older and less likely to have had a prior stroke, demonstrating the uniqueness of AIS patients with COVID-19. Conclusions: Hospitalized COVID-19 patients who demonstrate a neurologic symptom and have either a history of prior stroke or are of younger age are at higher risk of ischemic stroke.

6.
Res Sq ; 2020 May 12.
Article in English | MEDLINE | ID: covidwho-1431216

ABSTRACT

BACKGROUND: COVID-19 is caused by the severe acute respiratory syndrome virus SARS-CoV-2. It is widely recognized as a respiratory pathogen, but neurologic complications can be the presenting manifestation in a subset of infected patients. CASE PRESENTATION: We describe a 78-year old immunocompromised woman who presented with altered mental status after witnessed seizure-like activity at home. She was found to have SARS-CoV-2 infection and associated neuroinflammation. In this case, we undertake the first detailed analysis of cerebrospinal fluid (CSF) cytokines during COVID-19 infection and find a unique pattern of inflammation in CSF, but no evidence of viral neuroinvasion. CONCLUSION: Our findings suggest that neurologic symptoms such as encephalopathy and seizures may be the initial presentation of COVID-19. Central nervous system inflammation may associate with neurologic manifestations of disease.

9.
Cell Rep Med ; 2(5): 100288, 2021 05 18.
Article in English | MEDLINE | ID: covidwho-1213573

ABSTRACT

Individuals with coronavirus disease 2019 (COVID-19) frequently develop neurological symptoms, but the biological underpinnings of these phenomena are unknown. Through single-cell RNA sequencing (scRNA-seq) and cytokine analyses of cerebrospinal fluid (CSF) and blood from individuals with COVID-19 with neurological symptoms, we find compartmentalized, CNS-specific T cell activation and B cell responses. All affected individuals had CSF anti-severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antibodies whose target epitopes diverged from serum antibodies. In an animal model, we find that intrathecal SARS-CoV-2 antibodies are present only during brain infection and not elicited by pulmonary infection. We produced CSF-derived monoclonal antibodies from an individual with COVID-19 and found that these monoclonal antibodies (mAbs) target antiviral and antineural antigens, including one mAb that reacted to spike protein and neural tissue. CSF immunoglobulin G (IgG) from 5 of 7 patients showed antineural reactivity. This immune survey reveals evidence of a compartmentalized immune response in the CNS of individuals with COVID-19 and suggests a role of autoimmunity in neurologic sequelae of COVID-19.

10.
Curr Opin Neurol ; 34(3): 417-422, 2021 06 01.
Article in English | MEDLINE | ID: covidwho-1183108

ABSTRACT

PURPOSE OF REVIEW: Over the course of the coronavirus disease (COVID-19) pandemic, it has become increasingly clear that there is a high prevalence of neurological complications in people infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). RECENT FINDINGS: Studies of central nervous system (CNS) tissue in brain model systems and from adults with acute SARS-CoV-2 infection have begun to uncover potential mechanisms for neurological damage during COVID-19. These studies suggest that direct viral invasion of the CNS occurs in a subset of cases but does not frequently cause overt viral meningoencephalitis. Vascular abnormalities including microvascular thrombi and endothelial activation, as well as parainfectious processes, including CNS specific immune responses, may contribute to neurological symptoms during acute SARS-CoV-2 infection. SUMMARY: Neuroimmune perturbations and vascular inflammation observed in people with COVID-19 may warrant investigation of immune-modulating interventions to ameliorate neurological complications associated with acute SARS-CoV-2 infection. These therapies may also impact the trajectory of potential long-term complications of COVID-19.


Subject(s)
COVID-19/complications , Nervous System Diseases/etiology , Nervous System Diseases/pathology , Humans , Immunotherapy , Nervous System Diseases/immunology , Nervous System Diseases/therapy , Vasculitis/etiology , Vasculitis/immunology
11.
Curr Opin Psychiatry ; 34(2): 177-185, 2021 03 01.
Article in English | MEDLINE | ID: covidwho-1005973

ABSTRACT

PURPOSE OF REVIEW: Over 70 million people worldwide, including those with neurodegenerative disease (NDD), have been diagnosed with coronavirus disease 2019 (COVID-19) to date. We review outcomes in patients with NDD and COVID-19 and discuss the hypothesis that due to putative commonalities of neuropathogenesis, COVID-19 may unmask or trigger NDD in vulnerable individuals. RECENT FINDINGS: Based on a systematic review of published literature, patients with NDD, including dementia, Parkinson's disease, and multiple sclerosis (MS) make up a significant portion of hospitalized COVID-19 patients. Such patients are likely to present with altered mental status or worsening of their preexisting neurological symptoms. Patients with NDD and poor outcomes often have high-risk comorbid conditions, including advanced age, hypertension, diabetes, obesity, and heart/lung disease. Patients with dementia including Alzheimer's disease are at higher risk for hospitalization and death, whereas those with preexisting Parkinson's disease are not. MS patients have good outcomes and disease modifying therapies do not increase the risk for severe disease. Viral infections and attendant neuroinflammation have been associated with the pathogenesis of Alzheimer's disease, Parkinson's disease, and MS, suggesting that COVID-19 may have the potential to incite or accelerate neurodegeneration. SUMMARY: Since patients with Alzheimer's disease are at higher risk for hospitalization and death in the setting of COVID-19, additional precautions and protective measures should be put in place to prevent infections and optimize management of comorbidities in this vulnerable population. Further studies are needed to determine whether COVID-19 may lead to an increased risk of developing NDD in susceptible individuals.


Subject(s)
COVID-19/complications , Dementia/complications , Hospitalization , Multiple Sclerosis/complications , Parkinson Disease/complications , Humans , Prognosis , Risk Factors
13.
JAMA Neurol ; 2020 Sep 08.
Article in English | MEDLINE | ID: covidwho-746366

ABSTRACT

IMPORTANCE: Neuroimaging is a key step in the clinical evaluation of brain injury. Conventional magnetic resonance imaging (MRI) systems operate at high-strength magnetic fields (1.5-3 T) that require strict, access-controlled environments. Limited access to timely neuroimaging remains a key structural barrier to effectively monitor the occurrence and progression of neurological injury in intensive care settings. Recent advances in low-field MRI technology have allowed for the acquisition of clinically meaningful imaging outside of radiology suites and in the presence of ferromagnetic materials at the bedside. OBJECTIVE: To perform an assessment of brain injury in critically ill patients in intensive care unit settings, using a portable, low-field MRI device at the bedside. DESIGN, SETTING, AND PARTICIPANTS: This was a prospective, single-center cohort study of 50 patients admitted to the neuroscience or coronavirus disease 2019 (COVID-19) intensive care units at Yale New Haven Hospital in New Haven, Connecticut, from October 30, 2019, to May 20, 2020. Patients were eligible if they presented with neurological injury or alteration, no contraindications for conventional MRI, and a body habitus not exceeding the scanner's 30-cm vertical opening. Diagnosis of COVID-19 was determined by positive severe acute respiratory syndrome coronavirus 2 polymerase chain reaction nasopharyngeal swab result. EXPOSURES: Portable MRI in an intensive care unit room. MAIN OUTCOMES AND MEASURES: Demographic, clinical, radiological, and treatment data were collected and analyzed. Brain imaging findings are described. RESULTS: Point-of-care MRI examinations were performed on 50 patients (16 women [32%]; mean [SD] age, 59 [12] years [range, 20-89 years]). Patients presented with ischemic stroke (n = 9), hemorrhagic stroke (n = 12), subarachnoid hemorrhage (n = 2), traumatic brain injury (n = 3), brain tumor (n = 4), and COVID-19 with altered mental status (n = 20). Examinations were acquired at a median of 5 (range, 0-37) days after intensive care unit admission. Diagnostic-grade T1-weighted, T2-weighted, T2 fluid-attenuated inversion recovery, and diffusion-weighted imaging sequences were obtained for 37, 48, 45, and 32 patients, respectively. Neuroimaging findings were detected in 29 of 30 patients who did not have COVID-19 (97%), and 8 of 20 patients with COVID-19 (40%) demonstrated abnormalities. There were no adverse events or complications during deployment of the portable MRI or scanning in an intensive care unit room. CONCLUSIONS AND RELEVANCE: This single-center series of patients with critical illness in an intensive care setting demonstrated the feasibility of low-field, portable MRI. These findings demonstrate the potential role of portable MRI to obtain neuroimaging in complex clinical care settings.

14.
Stroke ; 51(9): 2664-2673, 2020 09.
Article in English | MEDLINE | ID: covidwho-695899

ABSTRACT

BACKGROUND: Anecdotal reports suggest fewer patients with stroke symptoms are presenting to hospitals during the coronavirus disease 2019 (COVID-19) pandemic. We quantify trends in stroke code calls and treatments at 3 Connecticut hospitals during the local emergence of COVID-19 and examine patient characteristics and stroke process measures at a Comprehensive Stroke Center (CSC) before and during the pandemic. METHODS: Stroke code activity was analyzed from January 1 to April 28, 2020, and corresponding dates in 2019. Piecewise linear regression and spline models identified when stroke codes in 2020 began to decline and when they fell below 2019 levels. Patient-level data were analyzed in February versus March and April 2020 at the CSC to identify differences in patient characteristics during the pandemic. RESULTS: A total of 822 stroke codes were activated at 3 hospitals from January 1 to April 28, 2020. The number of stroke codes/wk decreased by 12.8/wk from February 18 to March 16 (P=0.0360) with nadir of 39.6% of expected stroke codes called from March 10 to 16 (30% decrease in total stroke codes during the pandemic weeks in 2020 versus 2019). There was no commensurate increase in within-network telestroke utilization. Compared with before the pandemic (n=167), pandemic-epoch stroke code patients at the CSC (n=211) were more likely to have histories of hypertension, dyslipidemia, coronary artery disease, and substance abuse; no or public health insurance; lower median household income; and to live in the CSC city (P<0.05). There was no difference in age, sex, race/ethnicity, stroke severity, time to presentation, door-to-needle/door-to-reperfusion times, or discharge modified Rankin Scale. CONCLUSIONS: Hospital presentation for stroke-like symptoms decreased during the COVID-19 pandemic, without differences in stroke severity or early outcomes. Individuals living outside of the CSC city were less likely to present for stroke codes at the CSC during the pandemic. Public health initiatives to increase awareness of presenting for non-COVID-19 medical emergencies such as stroke during the pandemic are critical.


Subject(s)
Brain Ischemia/epidemiology , Intracranial Hemorrhages/epidemiology , Stroke/epidemiology , Time-to-Treatment/statistics & numerical data , Aged , Aged, 80 and over , Betacoronavirus , Brain Ischemia/diagnosis , Brain Ischemia/physiopathology , Brain Ischemia/therapy , COVID-19 , Cohort Studies , Comorbidity , Connecticut/epidemiology , Coronary Artery Disease/epidemiology , Coronavirus Infections/epidemiology , Dyslipidemias/epidemiology , Emergency Medical Services , Ethnicity , Female , Humans , Hypertension/epidemiology , Income , Insurance, Health , Intracranial Hemorrhages/diagnosis , Intracranial Hemorrhages/physiopathology , Intracranial Hemorrhages/therapy , Male , Medically Uninsured , Middle Aged , Outcome and Process Assessment, Health Care , Pandemics , Pneumonia, Viral/epidemiology , Retrospective Studies , SARS-CoV-2 , Severity of Illness Index , Stroke/diagnosis , Stroke/physiopathology , Stroke/therapy , Substance-Related Disorders/epidemiology , Telemedicine , Thrombectomy , Thrombolytic Therapy
15.
BMC Neurol ; 20(1): 248, 2020 Jun 18.
Article in English | MEDLINE | ID: covidwho-603847

ABSTRACT

BACKGROUND: COVID-19 is caused by the severe acute respiratory syndrome virus SARS-CoV-2. It is widely recognized as a respiratory pathogen, but neurologic complications can be the presenting manifestation in a subset of infected patients. CASE PRESENTATION: We describe a 78-year old immunocompromised woman who presented with altered mental status after witnessed seizure-like activity at home. She was found to have SARS-CoV-2 infection and associated neuroinflammation. In this case, we undertake the first detailed analysis of cerebrospinal fluid (CSF) cytokines during COVID-19 infection and find a unique pattern of inflammation in CSF, but no evidence of viral neuroinvasion. CONCLUSION: Our findings suggest that neurologic symptoms such as encephalopathy and seizures may be the initial presentation of COVID-19. Central nervous system inflammation may associate with neurologic manifestations of disease.


Subject(s)
Betacoronavirus , Coronavirus Infections , Cytokines/cerebrospinal fluid , Encephalitis, Viral , Pandemics , Pneumonia, Viral , Acute Disease , Aged , Biomarkers/cerebrospinal fluid , COVID-19 , Female , Humans , SARS-CoV-2 , Seizures
16.
JAMA Neurol ; 77(8): 1018-1027, 2020 08 01.
Article in English | MEDLINE | ID: covidwho-432560

ABSTRACT

Importance: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged in December 2019, causing human coronavirus disease 2019 (COVID-19), which has now spread into a worldwide pandemic. The pulmonary manifestations of COVID-19 have been well described in the literature. Two similar human coronaviruses that cause Middle East respiratory syndrome (MERS-CoV) and severe acute respiratory syndrome (SARS-CoV-1) are known to cause disease in the central and peripheral nervous systems. Emerging evidence suggests COVID-19 has neurologic consequences as well. Observations: This review serves to summarize available information regarding coronaviruses in the nervous system, identify the potential tissue targets and routes of entry of SARS-CoV-2 into the central nervous system, and describe the range of clinical neurological complications that have been reported thus far in COVID-19 and their potential pathogenesis. Viral neuroinvasion may be achieved by several routes, including transsynaptic transfer across infected neurons, entry via the olfactory nerve, infection of vascular endothelium, or leukocyte migration across the blood-brain barrier. The most common neurologic complaints in COVID-19 are anosmia, ageusia, and headache, but other diseases, such as stroke, impairment of consciousness, seizure, and encephalopathy, have also been reported. Conclusions and Relevance: Recognition and understanding of the range of neurological disorders associated with COVID-19 may lead to improved clinical outcomes and better treatment algorithms. Further neuropathological studies will be crucial to understanding the pathogenesis of the disease in the central nervous system, and longitudinal neurologic and cognitive assessment of individuals after recovery from COVID-19 will be crucial to understand the natural history of COVID-19 in the central nervous system and monitor for any long-term neurologic sequelae.


Subject(s)
Betacoronavirus , Coronavirus Infections/diagnosis , Coronavirus Infections/therapy , Nervous System Diseases/diagnosis , Nervous System Diseases/therapy , Pneumonia, Viral/diagnosis , Pneumonia, Viral/therapy , Animals , COVID-19 , Coronavirus Infections/epidemiology , Humans , Nervous System Diseases/epidemiology , Pandemics , Pneumonia, Viral/epidemiology , SARS-CoV-2 , Severe Acute Respiratory Syndrome/diagnosis , Severe Acute Respiratory Syndrome/epidemiology , Severe Acute Respiratory Syndrome/therapy
SELECTION OF CITATIONS
SEARCH DETAIL